Can you find any +5 witnesses smaller than 42? (I'm currently trying to prove a length 45 and a length 41 candidate.) Can you find a smaller +3 witness than 19, or a smaller +4 witness than 26?
(These witnesses prove that f(n) >= sollen. Note that a "good" witness will be one that can be exhaustively proved reasonably fast; some stacks take much longer than others to prove. I have run all the ones listed here exhaustively.) lbound is a lower bound of f(n) for n>14. The value shown is the length of an existing solution to the sequence shown. All of these witnesses have been proven by me.
n | lbound | stack |
<1 | ||
1 | 0 | 1 |
2 | 1 | 2 1 |
3 | 3 | 1 3 2 |
4 | 4 | 2 4 1 3 |
5 | 5 | 2 5 3 1 4 |
+1 | ||
6 | 7 | 4 6 2 5 1 3 |
7 | 8 | 1 5 2 7 4 6 3 |
8 | 9 | 6 3 7 4 8 1 5 2 |
9 | 10 | 1 7 5 3 8 6 9 4 2 |
10 | 11 | 1 3 5 2 4 6 8 10 7 9 |
+2 | ||
11 | 13 | 1 11 3 6 9 4 7 10 5 8 2 |
12 | 14 | 1 10 2 12 4 6 8 5 9 7 11 3 |
13 | 15 | 1 10 3 12 2 11 9 6 8 4 13 7 5 |
14 | 16 | 1 14 12 4 7 10 5 8 11 6 9 3 13 2 |
15 | 17 | 1 14 12 4 7 10 5 8 11 6 9 3 13 15 2 |
16 | 18 | 1 14 12 4 7 10 5 8 11 6 9 3 15 13 16 2 |
17 | 19 | 16 12 9 14 11 8 13 10 15 7 17 4 6 2 5 1 3 |
18 | 20 | 1 10 13 8 3 6 4 7 5 2 12 9 11 14 16 18 15 17 |
+3 | ||
19 | 22 | 1 3 7 5 2 6 4 8 12 14 10 13 11 9 15 18 16 19 17 |
20 | 23 | 1 5 2 7 4 6 3 8 14 11 13 10 12 9 15 20 17 19 16 18 |
21 | 24 | 1 3 7 5 2 6 4 8 10 14 12 9 13 11 15 17 21 19 16 20 18 |
22 | 25 | 11 1 9 4 7 2 5 8 3 6 10 12 22 14 19 16 21 18 15 20 17 13 |
23 | 26 | 1 4 8 3 6 2 7 5 9 14 11 13 16 12 10 15 17 22 20 23 19 21 18 |
24 | 27 | 4 6 2 5 1 3 7 9 11 8 12 10 14 18 16 13 17 15 19 23 20 22 24 21 |
25 | 28 | 2 6 4 1 5 3 7 9 13 11 8 12 10 14 16 20 18 15 19 17 21 23 25 22 24 |
+4 | ||
26 | 30 | 1 5 3 7 4 2 6 8 12 14 10 13 11 9 15 21 19 17 20 16 18 22 25 23 26 24 |
27 | 31 | 1 5 3 7 4 2 6 8 12 14 10 13 11 9 15 21 19 17 20 16 18 22 27 25 23 26 24 |
28 | 32 | 1 5 2 7 4 6 3 8 14 11 13 10 12 9 15 19 21 18 16 20 17 22 26 23 28 25 27 24 |
29 | 33 | 6 3 8 5 2 7 4 1 9 13 16 11 14 17 12 15 10 18 24 22 20 23 21 19 25 27 29 26 28 |
30 | 34 | 1 5 8 3 6 9 4 7 2 10 14 17 12 15 18 13 16 11 19 25 23 21 24 22 20 26 28 30 27 29 |
31 | 35 | 19 11 16 13 18 15 12 17 14 10 2 7 4 9 6 3 8 5 1 20 26 24 22 25 23 21 27 29 31 28 30 |
32 | 36 | 1 7 5 3 6 4 2 8 16 10 12 14 11 13 15 9 17 23 21 19 22 20 18 24 32 26 28 30 27 29 31 25 |
33 | 37 | 1 6 3 8 5 2 7 4 9 14 11 16 13 10 15 12 17 25 22 19 24 21 18 23 20 26 31 28 33 30 27 32 29 |
34 | 38 | 1 9 6 3 8 5 2 7 4 10 15 12 17 14 11 16 13 18 23 20 25 22 19 24 21 26 34 31 28 33 30 27 32 29 |
35 | 39 | 1 7 5 3 6 4 2 8 14 12 10 13 11 9 15 21 19 17 20 18 16 22 28 26 24 27 25 23 29 35 33 31 34 32 30 |
36 | 40 | 15 9 11 13 10 12 14 8 2 4 6 3 5 7 1 16 22 20 18 21 19 17 23 29 27 25 28 26 24 30 36 34 32 35 33 31 |
37 | 41 | 30 23 17 19 21 18 20 22 16 1 7 5 3 6 4 2 8 14 12 10 13 11 9 15 29 27 25 28 26 24 31 37 35 33 36 34 32 |
38 | 42 | 31 24 26 28 25 27 29 15 9 11 13 10 12 14 8 2 4 6 3 5 7 1 16 22 20 18 21 19 17 23 30 32 38 36 34 37 35 33 |
39 | 43 | 32 30 23 17 19 21 18 20 22 16 1 7 5 3 6 4 2 8 14 12 10 13 11 9 15 29 27 25 28 26 24 31 33 39 37 35 38 36 34 |
40 | 44 | 1 3 5 2 4 6 8 10 7 9 11 13 15 12 14 16 18 20 17 19 21 23 25 22 24 26 28 30 27 29 31 33 35 32 34 36 38 40 37 39 |
41 | 45 | 1 6 3 8 5 2 7 4 9 14 11 16 13 10 15 12 17 25 22 19 24 21 18 23 20 26 31 28 33 30 27 32 29 34 39 36 41 38 35 40 37 |
+5 | ||
42 | 47 | 1 7 5 3 6 4 2 8 12 15 10 13 16 11 14 9 17 21 24 19 22 25 20 23 18 26 30 33 28 31 34 29 32 27 35 37 40 36 39 42 38 41 |
43 | ? | ? |
44 | 49 | 6 3 8 5 2 7 4 1 9 13 16 11 14 17 12 15 10 18 22 25 20 23 26 21 24 19 27 31 34 29 32 35 30 33 28 36 40 43 38 41 44 39 42 37 |
45 | 50 | 1 5 8 3 6 9 4 7 2 10 14 17 12 15 18 13 16 11 19 23 26 21 24 27 22 25 20 28 32 35 30 33 36 31 34 29 37 41 44 39 42 45 40 43 38 |
What we know about f(n):
We have proved the above values for f(n) up to f(14)=16. For 15..50, all we have is witnesses for lower bounds.
This is about all we know. I believe the H&S result also includes (though they do not state this in their paper) that
I also believe the H&S and G&P results combine, since the proof is essentially identical, allowing us to say that
This helps us fill in some of the discrete gaps. Further, combining the above two, we also know that
For high values of n, where G&P no longer contributes, and H&S dominates, we can set the following bounds:
i | v(i) |
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 3 |
5 | 2 |
6 | 1 |
7 | 0 |
8 | 1 |
9 | 2 |
10 | 3 |
11 | 3 |
12 | 2 |
13 | 1 |