
Conquering the Cube with Cosets

Tomas Rokicki
rokicki@gmail.com

The group theoretic concept of cosets has proven ef-
fective in expanding our knowledge of Rubik’s Cube,
and promises to determine the God’s number for the
puzzle in the near future. We present four state of the
art techniques to solve the Rubik’s Cube. Two will find
optimal solutions, and two will only find solutions of
distance 20 or less. Two will solve arbitrary individual
positions, and two, based on cosets, will solve large sets
of related positions. The performance of these solvers
varies by more than nine orders of magnitude, as shown
in Table 1.

1 Computer Cubing Milestones

To prepare the reader for the new techniques and results
presented here, we must first recollect a bit of history.
We give just enough detail to understand the key ideas
in these algorithms. For more details on implement-
ing puzzle solvers, see the Computer Puzzling page by
Scherphuis [8]; for more details on how group theory
applies to Rubik’s Cube, see Joyner [2].

Two primary milestones in computer cubing are Ko-
ciemba’s two-phase algorithm [3] from 1992, which was
the first to quickly find near-optimal solutions for arbi-
trary positions, and Korf’s optimal solver [4] from 1997,
which could optimally solve arbitrary positions. These
algorithms are based on iterated depth-first search.
This search technique adds a depth limit to depth-first
search, starting with a limit of zero and increasing it
until the problem is solved. It can be considered a form
of breadth-first search where the frontier is not stored
explicitly, but is rather rediscovered as necessary. Both
Kociemba’s and Korf’s algorithms explore the Cayley
graph of the cube group, where the positions of the cube
correspond to nodes of the graph and the moves of the
cube correspond to edges of the graph.

Iterated depth-first search is identical to enumerat-
ing move sequences of the cube in order of their length.
We can analyze the runtime of these algorithms by con-
sidering how many such sequences are so explored. We
will primarily concern ourselves here with the half-turn
metric, where there are 18 primary moves: a clockwise
quarter twist, counter-clockwise quarter twist, and half-

Optimal Near-optimal
Individual 0.36 3900

Coset 2 · 106 109

Table 1: The solution rate, in positions per second, for
four different algorithms for solving the cube.

twist of each of the six faces. We use Singmaster nota-
tion, where the faces are labeled U, F, R, D, B, and L
(for up, front, right, down, back, and left) and moves are
represented by U, U2, and U’, for a clockwise twist, half
twist, and counter-clockwise twist, respectively. The
techniques we use apply similarly to the quarter-turn
metric, where half twists are considered two moves.

Using the half-turn metric, any sequence with two
consecutive quarter turns of the same face is not inter-
esting, because there is a shorter sequence with a half
turn of that face that leads to the same position. Thus,
not all of the 18d sequences of length d are worth explor-
ing. Two simple rules are commonly used by cube pro-
grams to restrict themselves to interesting sequences.
First, no turns of the same face can be adjacent. Sec-
ond, any pair of adjacent commuting single moves (such
as U and D) are always given in a particular order (we
use U before D, F before B, and R before L). Any
sequence that satisfies these two rules is considered a
canonical sequence and cube programs will usually only
explore such sequences. The number of canonical se-
quences of a given length is easily calculated with a
simple recurrence, which we tabulate in Table 2.

Many interesting questions concern the distance of
a position—the minimal number of moves required to
attain that position from a solved cube (equivalently,
the number of moves required to solve that position).
For the values of d for which the count of positions
at distance (c(d)) is known, the number of canonical
sequences of that length (f(d)) is close to the number
of positions at that distance; even at distance 13 (the
deepest distance fully searched) they are within 10%
of each other. Thus, cube programs based on canonical
sequences are effective at exploring the space of the cube
without exploring equivalent positions over and over

Page 1



d f(d)
0 1
1 18
2 243
3 3,240
4 43,254
5 577,368
6 7,706,988
7 102,876,480
8 1,373,243,544
9 18,330,699,168

10 244,686,773,808
11 3,266,193,870,720
12 43,598,688,377,184
13 581,975,750,199,168
14 7,768,485,393,179,328
15 103,697,388,221,736,960
16 1,384,201,395,738,071,424
17 18,476,969,736,848,122,368
18 246,639,261,965,462,754,048
19 3,292,256,598,848,819,251,200
20 43,946,585,901,564,160,587,264

Table 2: The number of canonical sequences of length
d in the half-turn metric.

again; this is a major reason iterated depth-first search
performs effectively.

2 An Optimal Solver

Korf’s optimal solving algorithm is somewhat simpler
than Kociemba’s two-phase solver, so we will discuss it
first. The key idea is to use a large table that gives
a lower bound on the distance of a particular position.
On every new node explored by depth-first search, if the
distance given by that table for the current position
is greater than the remaining depth permitted to be
explored by this iteration of the search, we prune this
node from the search; we backtrack. Thus these tables
are called pruning tables (or pattern databases). Every
pruning table has an effective distance which is roughly
the distance at which search is typically cut off. The
larger the table, the greater the effective distance and
the faster the overall algorithm.

We use the term effective distance without giving a
formal definition; it is intended to reflect the efficacy
of the pruning table more than its average distance or
some other more easily measured quantity, to simplify
our analysis. The effective distance is usually not far
from the average distance; indeed, if it is far, that indi-
cates a defect in the chosen pruning table.

With a pruning table of effective distance d, during
iteration n of the depth-first search in Korf’s algorithm,
we will explore all canonical sequences of length n−d+1.

The runtime of the algorithm is directly proportional to
the number of sequences we must explore before we find
a solution; for typical positions, a solution is found at
depth 18. For simplicity, we will assume the solution
is found halfway through a depth 18 search. Using a
reasonable pruning table of, say, 8GB, we can attain an
effective distance of about 12, so the runtime for a typ-
ical position should be proportional to the exploration
of the number of canonical sequences of length 6 or less.
Table 2 shows about eight million such sequences so we
expect the average runtime to be that required to ex-
plore about that many positions.

We have implemented Korf’s algorithm using such a
large pruning table, and we require about 40 million
evaluations on average, which is close enough for this
rough analysis. This program is able to solve random
positions at a rate of about 0.36 positions per second
on an i7-920 CPU running at 2.66GHz. This is about
4 1/2 orders of magnitude faster than Korf’s original
program on his Sun workstation, and reflects primarily
technology improvements in computer hardware. This
problem of optimally solving cube positions is interest-
ing in that its solution speed is proportional to both the
CPU speed and to the memory available, both of which
have been improving according to Moore’s law; thus,
the overall runtime of this algorithm has been improv-
ing, approximately, according to Moore’s law squared.

We solved 1,000,000 randomly selected positions in
both the half-turn and the quarter-turn metric; the dis-
tance results are shown in Table 3. Note that even with
one million samples, all the positions were solved in
under twenty moves in the half-turn metric and under
twenty-four moves in the quarter-turn metric.

3 The Two-Phase Solver

Finding an optimal solution is much harder than find-
ing a near-optimal solution. Kociemba’s two-phase al-
gorithm does this latter very effectively, but to under-
stand it we need to know just a tiny bit of group theory.

Let us assume we are exploring the Rubik’s Cube
group, but we disallow all quarter moves on the faces
F, R, B, and L; thus, we only permit 10 of the usual 18
moves. With this subset of moves, we find we cannot
attain all positions of the cube; in fact, we can only at-
tain 19,508,428,800 of them. This set of positions forms
a subgroup of the larger cube group; we will call this
subgroup H. H contains approximately one in every
two billion cube positions. We can build two tables,
both small enough to fit in memory, which enable us to
rapidly find good solutions to arbitrary positions. The
first table, called the phase one table, tells for a given
arbitrary cube position how many moves it would take
to convert that position to one in H. The second table
tells for all of the positions in H how far that position
is from solved, using only moves in H.

Page 2



12h 13h 14h 15h 16h 17h 18h 19h
15q 1 1 3 2 7
16q 2 18 48 35 103
17q 3 23 143 347 354 870
18q 5 40 305 1,713 4,520 2,034 8,617
19q 1 40 505 5,190 29,711 33,363 474 69,284
20q 2 39 674 9,932 100,164 212,466 7,213 330,490
21q 9 345 7,697 104,052 301,668 16,371 430,142
22q 41 1,533 28,173 120,449 9,720 159,916
23q 1 53 427 90 571

1 14 172 2,063 26,448 267,027 670,407 33,868 1,000,000

Table 3: Distances of a random set of 1,000,000 positions, in both half-turn metric and quarter-turn metric.

Kociemba’s algorithm, given an arbitrary position,
uses iterated depth-first search to enumerate the se-
quences that transform that position to one in H. For
each such sequence found, he considers the sum of the
length of that sequence and the distance to solved re-
turned from the phase two table; the sum is the length
of a solution to the original position starting with the
sequence under scrutiny. If this is the best so far, he
saves it, and continues the search. In practice this is
able to find distance-20 or better solutions to arbitrary
positions in, typically, under a millisecond.

The key idea is that the phase one table is a per-
fect pruning table; for every position, it gives the exact
count of moves (not just a lower bound) necessary to
transform the position into one in H. Similarly, the
phase two table is also exact. This means no time is
wasted enumerating incorrect sequences; each sequence
is found in constant time, at a rate of millions per sec-
ond. Only those sequences that lead to H are generated
and explored; this is approximately one out of every two
billion sequences at each length. Phase two sequence
exploration is only done if the new solution is definitely
better than the one we have in hand, so the time for
that exploration is negligible. The runtime, therefore,
is proportional to how many phase one sequences are
generated in order to find a distance-20 solution.

Let us consider a search through distance-d phase one
solutions. There are approximately f(d)/(2 · 109) such
sequences for a typical starting position; thus, there are
about that many probes to the phase two table, which
has the distribution shown in Table 4.

Let us start our consideration at distance nine, which
is the first distance that likely contains a phase one solu-
tion (for an arbitrary given position). At this distance,
the number of canonical sequences is about 2 · 1010 so
there will typically be only a few phase-one solutions,
and the expected few probes in the phase two table
will probably give us a value around 13, for a total dis-
tance of 22. At a phase one distance of 13, there are
about 6 ·1014 canonical solutions, only about 300,000 of
which our phase one search will generate (since the oth-
ers do not leave us with a position in H). Those 300,000

d count d count
0 1 10 116,767,872
1 10 11 552,538,680
2 67 12 2,176,344,160
3 456 13 5,627,785,188
4 3,079 14 7,172,925,794
5 19,948 15 3,608,731,814
6 123,074 16 224,058,996
7 736,850 17 1,575,608
8 4,185,118 18 1,352
9 22,630,733

19,508,428,800

Table 4: The phase two distance table distribution for
Kociemba’s two-phase algorithm.

probes in the phase two table will probably give us at
least one that is of distance seven or less, for a total
solution length of 20.

This is a rough analysis, and in practice, enough po-
sitions require phase one searches of 14, 15, and 16 that
the average count of phase one sequences that need to
be considered could be substantially higher. This is
mitigated with some additional techniques that take
into account different orientations of the position. A
modern implementation of Kociemba’s algorithm on an
i7-920 can find distance-20 solutions for about 3,900
random positions per second, requiring an average of
only 785 phase one evaluations each. This is more than
10,000 times faster than the optimal solver.

4 A Coset Solver

Kociemba’s algorithm shows how effective a bit of group
theory can be in practice. Another example of this is
the problem of counting the cube positions at a given
distance. Jerry Bryan [1] has done this to distance 11 in
the half-turn metric and 13 in the quarter-turn metric,
but we can extend these results using cosets.

The most straightforward approach to this problem

Page 3



is to use iterated depth-first search, and store all the
found positions in a big table. If we explore a sequence
that just happens to reach a position we have already
seen before, we don’t count it twice. But this table
rapidly gets too large to fit into memory, and if you
spool the table out to disk, the performance drops sig-
nificantly. What we need is some way to partition the
cube space so we can explore it one small section at
a time, and add up the results from these individual,
smaller explorations to get our final counts.

As a thought experiment, let us imagine that we re-
move the stickers from all of the edge cubies; only the
corners and centers remained stickered. “Solving” this
cube is much easier; indeed, there are only 88,179,840
distinct positions, so we can use a tiny, fast lookup ta-
ble. Indeed, many of the positions are equivalent by
symmetry; this cuts the size of the table down to about
1.8 million. In addition, any given position and its in-
verse have the same distance, so we can reduce this
down to about one million distinct corner positions that
need to be considered.

With such a pruning table, we can quickly enumer-
ate, for any particular corner position, all the distinct
canonical sequences of length d that “solve” that cor-
ner position, using iterated depth-first search and using
the table of distances to prune ineffective moves. Why
do we care about multiple solutions to the same corner
position? Because if we apply those solutions to the
original, fully stickered cube, we find we are enumerat-
ing a set of positions in the full cube group that have a
particular corner position, but various edge positions.
This is one example of a coset.

The positions of the cube form a group with many
subgroups. One of those subgroups is the set of po-
sitions with the corners in the solved position, but
the edges arranged arbitrarily; this subgroup is of size
12!/2 · 211 or 490,497,638,400. For any arbitrary po-
sition of the cube, we can apply each of the positions
from the subgroup to obtain a new set; this new set is
called a coset. For each position in one of these cosets,
all the corners are in the same positions, but the edges
are moved around. Every coset of a subgroup has the
same size, and the number of cosets is just the size of
the group divided by the size of the subgroup.

So to enumerate all the cube positions at distance d,
we can do the following for each of the approximately
million distinct interesting corner positions. First we
enumerate all the positions at a distance less than d
(using this same technique, recursively). Then, we enu-
merate all sequences of length d that solve the corner
position; for each of those sequences, we apply it to the
normally stickered cube, check if it’s not in the table
containing positions at distance less than d, and if not,
add it to the table and increment our counter (being
careful to take into account the symmetry of the posi-
tion). After we have enumerated all such sequences, we
add the count to our global count, clear the table, and

d HTM positions (f(d)) QTM positions
0 1 1
1 18 12
2 243 114
3 3,240 1,068
4 43,239 10,011
5 574,908 93,840
6 7,618,438 878,880
7 100,803,036 8,221,632
8 1,322,343,288 76,843,595
9 17,596,479,795 717,789,576

10 232,248,063,316 6,701,836,858
11 3,063,288,809,012 62,549,615,248
12 40,374,425,656,248 583,570,100,997
13 531,653,418,284,628 5,442,351,625,028
14 50,729,620,202,582
15 472,495,678,811,004

Table 5: The number of Rubik’s Cube positions at dis-
tance d in both the half-turn metric (HTM) and the
quarter-turn metric (QTM).

move on to the next interesting corner position.
Using this technique, we break the problem down into

about a million smaller problems, each of which fit into
memory more easily. The total runtime is directly pro-
portional to the number of canonical sequences of length
d, which for the depths explored is also proportional to
the result. The results from this exploration are shown
in Table 5; the overall runs took about ten days of CPU
time on an i7-920 for the last level in both the half-turn
metric and the quarter-turn metric. The results reflect
about 6.4 million new positions found per second; these
are all optimal solves, but not arbitrary positions. Only
the last two rows in each column are new results.

5 Another Coset Solver

The above technique partitions the cube group by cosets
of the subgroup that fixes corners. For other cube ex-
plorations, other subgroups can be more effective. For
example, Kociemba’s subgroup H can be used.

One reason the subgroup H was so effective in Ko-
ciemba’s algorithm is that it neatly splits the cube
group into two subproblems of roughly equal size; phase
one has a size of about 2 billion, and phase two has a
size of about 20 billion. Tables describing these sub-
problems can easily fit into memory for quick access.

Kociemba’s algorithm motors through millions of se-
quences per second, but it discards the vast majority of
them in search of short solutions for an arbitrary po-
sition. But, if our interest is to optimally solve many
distinct (but related) positions at once, as was the case
for our corners-fixed solver above, we do not need to
discard those solutions; we can retain them as solutions

Page 4



to specific positions we are interested in. Indeed, let us
execute Kociemba’s algorithm changed in only one ma-
jor respect: instead of looking up distances in a phase
two table, let us just mark off entries in a phase two
bitmap indicating that that particular entry has been
reached. The full phase two bitmap itself represents a
particular coset we are interested in solving, and setting
a bit that was previously unset is specifically finding an
optimal solution to a position in that coset.

For a typical coset, a search at level d requires con-
sideration of about f(d)/2 · 109 sequences. My current
implementation can explore about 10 million sequences
per second on an i7-920. A full exploration out to depth
19 takes about 46 hours but, for most cosets, solves all
positions, at a rate of about 120,000 optimal solutions
a second. We can do much better than even this.

Most of the sequences will end in one of the ten moves
from H (since these are 10 of the 18 normal moves).
The bitmap represents a coset of moves all related by
moves in H; that is, the position reached by the prefix
of the sequence omitting the last move is also in H, and
was found by the previous-depth search. If we use two
bitmaps, one for depth d−1 and another for the current
depth d, we can scan the bitmap at depth d−1, and for
any bits set, extract the relevant position, apply each of
the ten moves from H to this position and set the cor-
responding bit in the bitmap for depth d. Furthermore,
we can do this operation on all potential 19,508,428,800
potential positions at d − 1 with all ten generators of
H in about four seconds, using small lookup tables and
bitmap tricks. This is about 50 billion group operations
per second. We call this a prepass since it is typically
run before a search pass. This prepass saves us about
a factor of two at each search depth, which brings our
time per coset down to about 23 hours.

Indeed, we do not need to complete a depth 19 search
at all. Instead, we complete a depth 18 search (using
the prepass idea above) in about 100 minutes. This will
set all but about 600 million bits, on average. Then, we
execute the prepass once, marking all positions that are
at depth 19 in a move sequence that ends in one of the
moves from H. This leaves on average only about 400
positions, positions that could be at distance 19, 20,
or more. We then optimally solve these remaining 400
positions by first trying the two-phase solver to find a
solution at distance 19 (since we know these positions
are distance 19 or deeper), and if that fails, using the
optimal solver. On average handling these remaining
400 positions takes another 60 minutes, so overall we
can solve all 19,508,428,800 positions in the coset in 160
minutes total, for a rate of about two million optimal
solutions per second. This is about six million times
faster than solving the positions individually.

We applied this technique to 250 randomly selected
H-cosets with a total of nearly five trillion positions.
The final distance distribution is shown in Table 6. Of
these 250 cosets, only 18 had any distance-20 positions,

d count
8 30
9 990

10 18,603
11 291,034
12 4,191,486
13 57,843,281
14 779,147,743
15 10,312,034,775
16 131,362,659,765
17 1,315,341,261,754
18 3,261,117,757,529
19 158,131,992,975
20 35

4,877,107,200,000

Table 6: The distance distribution of the positions op-
timally solved from 250 random H-cosets.

and there were only 35 such positions. Extrapolating
this to the entire cube group, we estimate there are ap-
proximately 300,000,000 distance-20 positions. Picking
positions at random, a distance-20 position might only
be encountered every 140 billion positions.

6 God’s Number

God’s number is the distance of the farthest position
from start, or the diameter of the Cayley graph. Prior
to the coset solver we are describing, the best results
were a lower bound of 20 (by example position at that
distance) and an upper bound of 26 [5].

To find God’s number, we do not need to find optimal
solutions for all positions, but instead find a distance
bound for the coset as a whole. If we do a search to
depth 16 (typically taking about 35 seconds), then do
four prepasses to extend these solutions to depth 17, 18,
19, and 20, this alone will typically eliminate all but a
few positions. Essentially, we are implicitly enumerat-
ing all the sequences that use any of the 18 face turns
for the first 16 moves, and then any of the 10 generators
of H for the last four moves (and of course all prefixes
of these sequences). The key here is implicitly; we only
explicitly enumerate the prefixes up to length 16, and
then use the prepass technique to extend our sets by
the generators of H for four steps.

Indeed, we don’t even need to do a full depth 16
search; once about 240 million bits are set at depth
16, we can terminate that search early and still end up
having found a solution to all the positions but a few
dozen. Using the two-phase solver will eliminate these
positions in well under a second, for a total runtime
of twenty seconds. Effectively, we are able to use this
technique to find a length-20 or shorter solution for all
19 billion members of an H-coset at a rate of a billion

Page 5



positions per second. This is about 250,000 times faster
than the standard two-phase algorithm.

Proving a bound of 20 on a coset provides a nice
concise representation of a bound on a large number of
positions. Cosets are related to each other by the same
generators that form the group itself; applying a single
move to all the positions in a coset by left multiplication
takes the entire coset into an adjacent coset; the graph
of the cosets related by these moves forms a Schreier
coset graph. If we prove a bound of 20 on a coset,
we implicitly prove a bound of 21 on its neighboring
cosets, and 22 on the neighbors of those cosets, and so
on. The coset graph has two billion elements (about
138 million when reduced by symmetry) so it easily fits
into memory. By computing bounds of 20 on scattered
cosets, I have been able to lower the bound on God’s
number from the 26 cited above all the way down to
22 [7]. Computer time for this search was generously
donated by Sony Pictures Imageworks, using the same
computers that rendered Spiderman and Surf’s Up.

7 The Search for 20’s and 21’s

Since distance-20 positions are so rare, one interesting
challenge is to find as many as you can. Silviu Radu
and Herbert Kociemba did this successfully in 2006;
they calculated optimal solutions to all 164,604,041,664
symmetrical positions of the cube [6]. They hypoth-
esized that the density of distance-20 positions would
be higher in the set of symmetrical positions, and they
were able to identify all of the 1,091,994 positions that
are at distance 20 and exhibit any symmetry.

But most distance-20 positions are not symmetrical.
Is there a way we can identify these positions more ef-
ficiently than searching random H-cosets one after the
other, picking up on average less than one distance-20
positions per coset solved? Yes there is. A dynamic
programming approach that evaluates the count of se-
quences of length d that result in positions from each
H-coset requires a fair amount of memory to execute,
but is otherwise straightforward. This computation al-
lows us to identify those cosets of H that have the fewest
length-19 sequences. If we assume that such cosets are
likely to have the greatest count of distance-20 posi-
tions, we can solve only those cosets and expect to get
a much higher success rate.

We have identified and solved 346 of the cosets that
have the fewest distance-19 sequences. From these
cosets, we have found 108,316 distance-20 positions,
each of which expands by rotation and inversion to up
to 95 additional positions. As of this writing, we have
a grand total of 10,592,538 distance-20 positions, which
is probably about three or four percent of the total.

If there are any distance-21 positions, they might
more likely occur in one of the cosets with the greatest
number of distance-20 positions (since any coset with

a distance-21 position must, by necessity, contain at
least 10 distance-20 positions.) But to date we have
not found any distance-21 positions.

Current machines can prove a bound of 20 for an
arbitrary H-coset in about 20 seconds. Proving a bound
of 21 for God’s Number would require about 7.5 million
cosets to be bounded at 20; proving a strict bound of 20
for God’s number would require about 56 million cosets
to be bounded at 20 (or, a position at distance 21 might
be found). Both of these are within the capabilities of
a large cluster of computers or a distributed attack; it
should be at most a couple of years before God’s number
is finally proved.

8 Acknowledgements

Many of the ideas used in implementing these programs
originated in discussions with Silviu Radu and Herbert
Kociemba; I am grateful for their time and energy. I
am also thankful for Martin Gardner, who sparked my
interest in recreational math.

References

[1] Bryan, Jerry. “Distance from Start, Standard
3x3x3 Rubik’s Cube.” http://home.comcast.
net/~c24m48/math/rubikresults.html

[2] Joyner, David. Adventures in Group Theory: Ru-
bik’s Cube, Merlin’s Magic & Other Mathemati-
cal Toys. Baltimore: The John Hopkins University
Press, 2008.

[3] Kociemba, Herbert. “Close to God’s Algorithm”
Cubism For Fun 28 (April 1992) pp. 10-13.

[4] Korf, Richard E. “Finding Optimal Solutions to
Rubik’s Cube Using Pattern Databases.” Proceed-
ings of the Workshop on Computer Games (W31)
at IJCAI-97.

[5] Kunkle, D.; Cooperman, G. “Twenty-six Moves
Suffice for Rubik’s Cube.” Proceedings of the In-
ternational Symposium on Symbolic and Algebraic
Computation (ISSAC ’07), ACM Press.

[6] Radu, Silviu. “How to Compute Optimal Solutions
for All 164,604,041,664 Symmetric Positions of Ru-
bik’s Cube.” June, 2006. http://cubezzz.
homelinux.org/drupal/?q=node/view/63

[7] Rokicki, Tomas G. “Twenty-two Moves Suffice for
Rubik’s Cube.” The Mathematical Intelligencer 32
(1) (March 2010) pp. 33-40.

[8] Scherphuis, Jaap. “Computer Puzzling.”
http://www.jaapsch.net/puzzles/
compcube.htm

Page 6


